PNCWA 2010

Put Your Lights On: Design and Construction of a Large UV Facility at Central Valley WRF, Utah by Cynthia L. Bratz, P.E.

October | 2010

Agenda

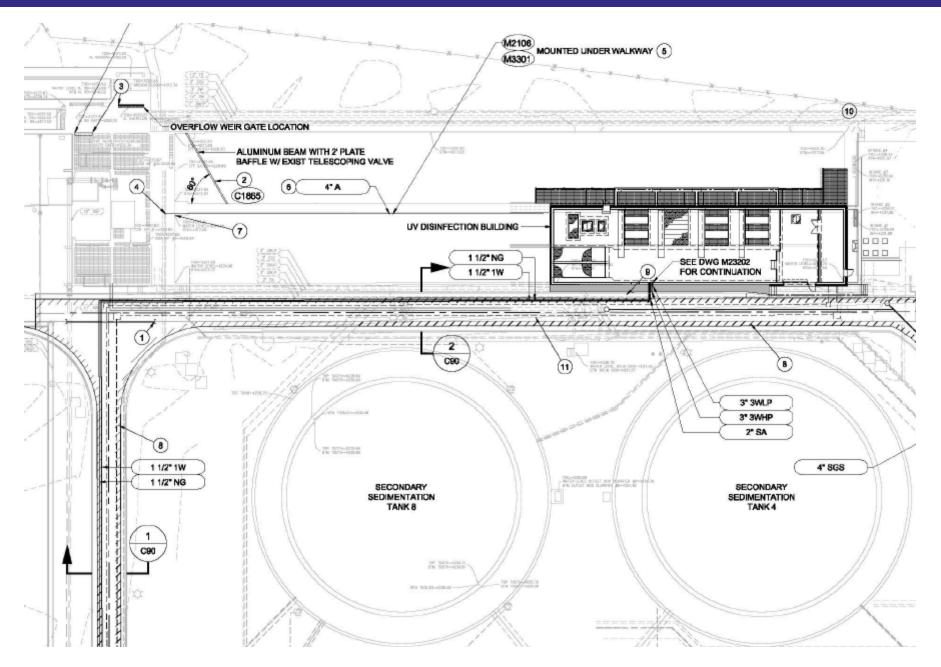
- Team and Client
- Background
- Equipment evaluation
- Construction
- Start-up

Team and Client

- BC Project Manager: Phil Heck, P.E., SLC
- BC Technical Advisor: Dave Murray, P.E., Portland OR
- BC Technical Advisor: Cyndy Bratz, P.E., Boise ID
- Large client with engineering expertise
 - Active in decision making and guiding the project
 - Used BC expertise "efficiently"

Background

- Trickling Filter/Solids Contact WWTP
- Existing ADF = 55 mgd
- Existing PHF = 120 mgd


Background

- Past disinfection method was gaseous chlorine
- 20-year old chlorination equipment
- Chlorine transported by Rail Car
- Large chlorine gas leak in 2007

2007 Disinfection Study

- New 150 mgd UV facility to replace gaseous chlorination
- Considered new UV facility located next to chlorine contact basins
 - Lower cost than retrofitting existing chlorine contact basins
- District Board preferred to make efficient use of existing tankage

Design Criteria

Parameter	Units	Design	Ultimate
Design Average Annual Daily Flow (AADF)	mgd	75	100
Design Peak Hour Flow (PHF)	mgd	150	200
Design Peak Hour Flow per Channel	mgd	50	50
Average Influent SS	mg/L	25	25
Design UV Transmission (UVT)	%	65	65
Design Dose	mJ/cm ²	30	30
Effluent Monthly Average, E-coli Coliform	MPN/100 ml	126	126
Effluent Weekly Average, E-coli Coliform	MPN/100 ml	158	158

Equipment Evaluation

- Site visits to Detroit area
 - Ozonia Aquaray 40HO and Siemens.
 - No operational Ozonia 3X at the time (2007)
- Site visits to California
 - Wedeco TAK 55 and Trojan UV3000 Plus
- Client preferred vertical-lamp systems
 - Better turndown capability
 - Dose pace by row and modulate power to lamps
 - Easier to access lamps (and ballasts), easier maintenance

Equipment Comparison

Parameter	Units	Ozonia 3X	Siemens	
Lamp Type		Low pressure, high output	Low pressure, high output	
Total Number of Lamps	No.	972	1600	
Power Input per Lamp	Watts	406	350	
Lamp Output	Watts	160	105	
Lamp Efficiency	%	39	30	
Dose Pacing		By row Power modulation	Bank on/off	

O&M Cost Estimate and Comparison

Consumables

Total

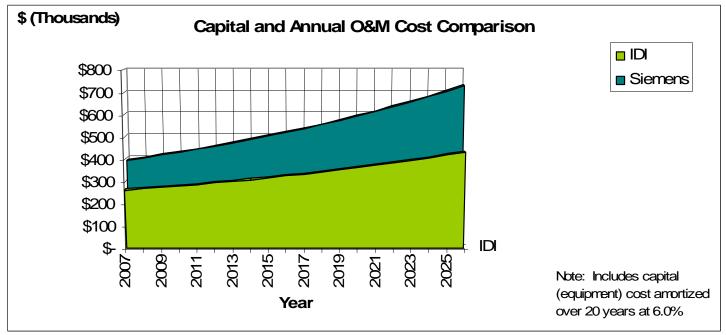
		Numbe r of Lamps at Avg Flow	Power Consumpt ion per Lamp (kw)	Number of Hours in Operation ¹	Power Cost	Ozonia 3X	Siemens
Power	Ozonia	324	0.406	8760	\$ 0.0545	\$ 62,802	
	Siemens	700	0.35	8760	\$ 0.0545		\$ 116,968
Cleaning					Chemica I Cost per Year ²		
Cleaning Chemicals	Ozonia				\$ 100	\$ 100	
	Siemens				\$ 100		\$ 100
Subtotal Consumables						\$62,902	\$ 117,068

O&M Cost Estimate and Comparison

Replacement

Number of							
Lamps		Number of Lamps at Avg Flow	Replacem ent Hours ³	Lamps Replaced Per	Cost per Lamp	Ozonia 3X	Siemens
	Ozonia	324	12000	237	\$175	\$ 41,475	
	Siemens	700	12000	511	\$145		\$ 74,095
		Number of Ballast at Avg Flow	Replacem ent Years ³	No. of Ballast Replaced/yr	Cost per Ballast		
Ballast	Ozonia	162	5	33	\$285	\$ 9,405	
	Siemens	350	3	117	\$350		\$ 40,950
Wiper Rings		Number of Wiper Rings	Replacem ent Years ³	No. of Wiper Rings Replaced/vr	Cost per Wiper Ring		
	Ozonia	1400	1.3	1077	\$3.5	\$ 3,770	
	Siemens	3200	2	1600	\$0.5		\$ 800
		Number of Sleeves	Replacem ent Years⁴	No. of Sleeves Replaced/yr	Cost per Sleeve		
Sleeve	Ozonia	700	5	140	\$75	\$ 10,500	
	Siemens	1600	5	320	\$65		\$ 20,800
UV Sensor		Number of Sensors	Replacem ent Years ⁴	No. of Sensors Replaced/yr	Cost per Sensor ⁴		
	Ozonia	27	5	6	\$120	\$ 720	
	Siemens	40	5	8	\$120		\$ 960
	Subtotal Replacement Parts						\$ 137,605

O&M Cost Estimate and Comparison


Labor Costs

Cleaning Labor		Cleaning Frequenc y (no./yr)	No. of Hours per Module	No. of Modules	Labor Rate Per Hour	Ozonia 3X	Siemens
	Ozonia	6	1	27	\$ 45	\$ 7,290	
	Siemens	6	1	40	\$ 45		\$ 10,800
Relamping		No. of Lamps	No. of Minutes per Lamp	No. of Hours Per Year	Labor Rate Per Hour		
Labor	Ozonia	237	5	20	\$ 45	\$ 889	
	Siemens	511	No. of	43	\$ 45		\$ 1,916
Ballast		No. of Ballast	Minutes per	No. of Hours Per Year	Labor Rate Per Hour		
Replacemen t Labor	Ozonia	33	5	3	\$ 45	\$ 124	
	Siemens	117	10	20	\$ 45		\$ 878
Wiper Replacemen t Labor		No. of Lamps	No. of Minutes per Lamp	No. of Hours Per Year	Labor Rate Per Hour		
	Ozonia	237	2	8	\$ 45	\$ 356	
	Siemens	511	5	43	\$ 45		\$ 1,916
				Su	ubtotal Labor	\$ 8,658	\$ 15,510

Capital Costs and Net Present Value Analysis

Lifecycle Cost Comparison (LCC)

Element		Ozonia	Siemens		
Liement	Aquaray 3X "HO" VLS		Barrier VEA-40000		
Equipment Cost	\$	1,560,000	\$	2,148,000	
Equipment Annual O&M	\$	151,140	\$	297,220	
20 yr Net Present Value (NPV)	\$	6,768,200	\$	10,680,800	

Recommended Equipment Selection

The Ozonia 3X system was recommended for the following reasons:

- Lower capital, lower O&M, and lower 20-year NPV cost of equipment
 - Higher output lamps, so fewer lamps and ballasts to change
 - More efficient lamps (39% vs 30% efficiency)
 - Dose pacing by row of lamps and by modulating power to lamps
- Ballasts easier to change (ballast cards)
- Wiper system is more robust (heavy Teflon wipers instead of light EPDM wipers) and wipers are easier to change
- Manufacturer experience

 Mechanic al Sleeve Cleaning System Sleeve for UV Intensity Sensor

Wiper Plate

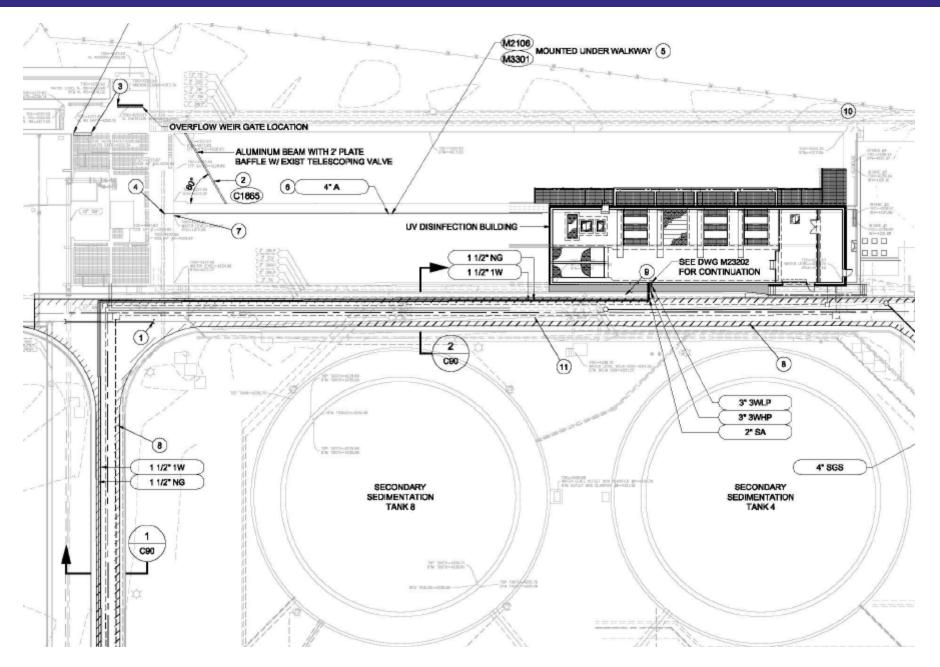
- Mechanical Sleeve Cleaning System
 - Patented Quick Change Wiper Ring

Quick
Wiper
Change

Quick
Wiper
Change

Quick
Wiper
Change

Put Your Lights On


Construction and Start-up

- Engineer's cost opinion
 - Approximately \$8 mil
- Bid opening
 - Winter 2008
- Total project cost
 - Approximately \$6 mil
 - Including engineering

- General Contractor: Peck Ormsby
- Owner performed on-site construction observation
- Little engineering involvement during construction
- Maintained chlorination / dechlorination during construction

Interesting construction sequencing:

- Maintained south basin on line for chlorination / dechlorination
- Took north basin offline and built effluent boxes
- Sawcut basin center wall but braced in place so channel could be placed back online

Construction in north basin:

Interesting construction sequencing:

- Placed north basin back in service
- Then took south basin offline and built UV channels and building
- Chlorine contact basin walls needed additional thickness to support new facilities

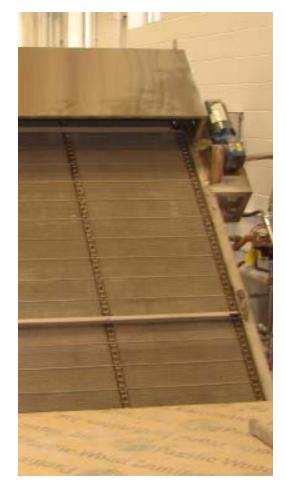
The funny thing about having a 300-ton crane on site is that you have to park it somewhere

Factory Acceptance Testing

- Standard in BC specs
- I&C engineer and client to visit factory to test PLC programming and controls
- Ensures that programming is complete before PLC is shipped
 - Helps keep manufacturer on schedule
 - Prevents long start-up period with improperly programmed (or not programmed) PLC
- Ozonia was ready for the FAT (barely) and it went well

Start-up- Early 2010

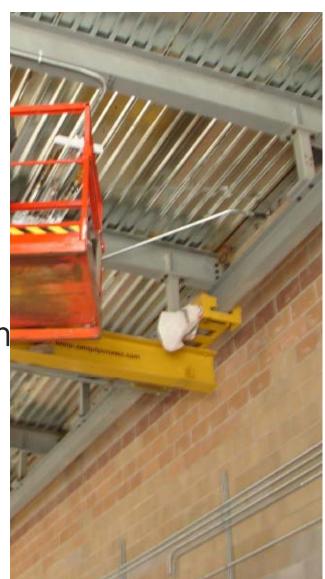
UV Facility


Algae screens:

Algae screens

Interesting features of this facility:

- Algae screens by International Water Screens – canal screen
- Needed low headloss screen
- Needed unit which could span a wide channel
- Standard WW screen not necessary
- Lower cost unit desirable



Ballast Enclosures

Underhung Bridge Crane

- Mounted as close to the walls as possible
- Minimize ceiling height
- Many bridge cranes sit on corbels on top of beams

Interference with Milltronics level sensors

Interference with Milltronics level sensor

Interference with Milltronic level sensors

Interference from Milltronics level sensors

- UV modules emitted an ultrasonic signal which interfered with the Milltronics ultrasonic sensors on the effluent gates (for level control)
- Replaced with a different manufacturer's ultrasonic sensors – no interference

Control system

Control System

- PLC programming was in Modicon
- Programming performed by Imalog (Ozonia's sub)

- System monitors individual lamps rather than modules
- 23,000 I/O points for this system
- 11,000 I/O points was largest we'd encountered previously
- Issue identified in predesign: typical CPU would get bogged down
- Solution proposed during predesign: provide SCADA workstation in place of HMI
 - Owner decided to proceed with HMI

PLC Programming Fix:

- Imalog proposed a solution to CVWRF which they are proceeding with
 - Reconfigure each channel to operate in stand-alone mode
 - Each channel will have a dedicated PLC and HMI which will contain ALL logic for that channel

Follow-up to the Ozonia 3X

Recently called UV installations for a different project

- Humble TX, Ozonia 3X which started up in 2007
- Design Flowrate: 19.6 mgd
- Current ADF: 5 mgd
- Minor problem with undersized fuses at start-up
- Wiper rings were redesigned and replaced (retrofit summer 2009)
- Few premature lamp failures
- No premature ballast failures

Put Your Lights On: Design and Construction of a Large UV Facility at Central Valley WRF, Utah

by Cynthia L. Bratz, P.E.

